Complete genome sequence of Lactobacillus plantarum WCFS1.

نویسندگان

  • Michiel Kleerebezem
  • Jos Boekhorst
  • Richard van Kranenburg
  • Douwe Molenaar
  • Oscar P Kuipers
  • Rob Leer
  • Renato Tarchini
  • Sander A Peters
  • Hans M Sandbrink
  • Mark W E J Fiers
  • Willem Stiekema
  • René M Klein Lankhorst
  • Peter A Bron
  • Sally M Hoffer
  • Masja N Nierop Groot
  • Robert Kerkhoven
  • Maaike de Vries
  • Björn Ursing
  • Willem M de Vos
  • Roland J Siezen
چکیده

The 3,308,274-bp sequence of the chromosome of Lactobacillus plantarum strain WCFS1, a single colony isolate of strain NCIMB8826 that was originally isolated from human saliva, has been determined, and contains 3,052 predicted protein-encoding genes. Putative biological functions could be assigned to 2,120 (70%) of the predicted proteins. Consistent with the classification of L. plantarum as a facultative heterofermentative lactic acid bacterium, the genome encodes all enzymes required for the glycolysis and phosphoketolase pathways, all of which appear to belong to the class of potentially highly expressed genes in this organism, as was evident from the codon-adaptation index of individual genes. Moreover, L. plantarum encodes a large pyruvate-dissipating potential, leading to various end-products of fermentation. L. plantarum is a species that is encountered in many different environmental niches, and this flexible and adaptive behavior is reflected by the relatively large number of regulatory and transport functions, including 25 complete PTS sugar transport systems. Moreover, the chromosome encodes >200 extracellular proteins, many of which are predicted to be bound to the cell envelope. A large proportion of the genes encoding sugar transport and utilization, as well as genes encoding extracellular functions, appear to be clustered in a 600-kb region near the origin of replication. Many of these genes display deviation of nucleotide composition, consistent with a foreign origin. These findings suggest that these genes, which provide an important part of the interaction of L. plantarum with its environment, form a lifestyle adaptation region in the chromosome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete resequencing and reannotation of the Lactobacillus plantarum WCFS1 genome.

There is growing interest in the beneficial effects of Lactobacillus plantarum on human health. The genome of L. plantarum WCFS1, first sequenced in 2001, was resequenced using Solexa technology. We identified 116 nucleotide corrections and improved function prediction for nearly 1,200 proteins, with a focus on metabolic functions and cell surface-associated proteins.

متن کامل

Lactobacillus plantarum WCFS1 and its host interaction: a dozen years after the genome

Lactobacillus plantarum WCFS1 is one of the best studied Lactobacilli, notably as its genome was unravelled over 12 years ago. L. plantarum WCFS1 can be grown to high densities, is amenable to genetic transformation and highly robust with a relatively high survival rate during the gastrointestinal passage. In this review, we present and discuss the main insights provided by the functional genom...

متن کامل

Genome-Wide Prediction and Validation of Sigma70 Promoters in Lactobacillus plantarum WCFS1

BACKGROUND In prokaryotes, sigma factors are essential for directing the transcription machinery towards promoters. Various sigma factors have been described that recognize, and bind to specific DNA sequence motifs in promoter sequences. The canonical sigma factor σ(70) is commonly involved in transcription of the cell's housekeeping genes, which is mediated by the conserved σ(70) promoter sequ...

متن کامل

Spatial and temporal expression of Lactobacillus plantarum genes in the gastrointestinal tracts of mice.

Lactobacillus plantarum is a common inhabitant of mammalian gastrointestinal tracts, and L. plantarum strain WCFS1 is a human isolate with a known genome sequence. L. plantarum WCFS1 survives intestinal passage in an active form, and its transit time and transcriptional activities were monitored in 15 BALB/c mice at 2, 4, 6, 8, and 24 h after being fed a single intragastric dose of this organis...

متن کامل

Genome-based in silico detection of putative manganese transport systems in Lactobacillus plantarum and their genetic analysis.

Manganese serves an important function in Lactobacillus plantarum in protection against oxidative stress and this bacterium can accumulate Mn(2+) up to millimolar levels intracellularly. Although the physiological role of Mn(2+) and the uptake of this metal ion have been well documented, the only uptake system described so far for this bacterium is the Mn(2+)- and Cd(2+)-specific P-type ATPase ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 4  شماره 

صفحات  -

تاریخ انتشار 2003